Sfb288 logo Sfb 288 Differential Geometry and Quantum Physics

Hierarchical Triangulations 1
n-dimensional Interpolation


The concept directly extends to n-dimensional parameter spaces D. We tesselate D with n-simplices where each vertex is a keyframe and contains a hierarchy. All key surfaces must fulfil the interpolation condition. In the case n=2 the parameter domain D is a triangulation of the (u,v)-plane. Let p lie in the triangle (pi, pj, pk) with barycentric coordinates (b1, b2, b3). Then the corresponding interpolated surface S(p) can be computed as

S(p) = b1S(pi) + b2S(pj) + b3S(pk)

Author: Axel Friedrich, Konrad Polthier


Copyright © 1999 Sfb 288, Mathematics 8-5, Strasse des 17 Juni 136, TU-Berlin, 10623 Berlin